RSS

Acid mine drainage treatment

Acid Mine Drainage Tratment:

Oversight

In the United Kingdom, many discharges from abandoned mines are exempt from regulatory control. In such cases the Environment Agency working with partners such as the Coal Authority have provided some innovative solutions, including constructed wetland solutions such as on the River Pelenna in the valley of the River Afan near Port Talbot and the constructed wetland next to the River Neath at Ynysarwed.

Although abandoned underground mines produce most of the acid mine drainage, some recently mined and reclaimed surface mines have produced ARD and have degraded local ground-water and surface-water resources. Acidic water produced at active mines must be neutralized to achieve pH 6-9 before discharge from a mine site to a stream is permitted.

In Canada, work to reduce the effects of acid mine drainage is concentrated under the Mine Environment Neutral Drainage (MEND) program. Total liability from acid rock drainage is estimated to be between $2 billion and $5 billion CAD. Over a period of eight years, MEND claims to have reduced ARD liability by up to $400 million CAD, from an investment of $17.5 million CAD.

Methods

Lime neutralization

By far, the most commonly used commercial process for treating acid mine drainage is lime precipitation in a high-density sludge process. In this application, a slurry of lime is dispersed into a tank containing acid mine drainage and recycled sludge to increase water pH about ~9. At this pH, most toxic metals become insoluble and precipitate, aided by the presence of recycled sludge. Optionally, air may be introduced in this tank to oxidize iron and manganese and assist in their precipitation. The resulting slurry is directed to a sludge-settling vessel, such as a clarifier. In that vessel, clean water will overflow for release, whereas settled metal precipitates (sludge) will be recycled to the acid mine drainage treatment tank, with a sludge-wasting side stream. A number of variations of this process exist, as dictated by the chemistry of ARD, its volume, and other factors. Generally, HDS-generated sludge also contains gypsum and unreacted lime, which enhance both its settleability and resistance to re-acidification and metal mobilization.

Less complex variants of this process, such as simple lime neutralization, may involve no more than a lime silo, mixing tank and settling pond. These systems are far less costly to build, but are also less efficient (i.e., longer reaction times are required, and they produce a discharge with higher trace metal concentrations, if present). They would be suitable for relatively small flows or less complex acid mine drainage.

Carbonate neutralization

Generally, limestone or other calcareous strata that could neutralize acid are lwaeaweawfzsda ient at sites that produce acidic rock drainage. Limestone chips may be introduced into sites to create a neutralizing effect. Where limestone has been used, such as at Cwm Rheidol in mid Wales, the positive impact has been much less than anticipated because of the creation of an insoluble calcium sulfate layer on the limestone chips, binding the material and preventing further neutralization.

Ion exchange

Cation exchange processes have previously been investigated as a potential treatment for acid mine drainage. The principle is that an ion exchange resin can remove potentially toxic metals (anionic resins), or chlorides and sulfates (cationic resins) from mine water. Once the contaminants are adsorbed, the exchange sites on resins must be regenerated, which typically requires expensive reagents and generates a brine that is difficult to dispose. A South African company claims to have developed a patented ion-exchange process that treats mine effluents (and AMD) economically, but such claims remain unsubstantiated at present.

Constructed wetlands

Constructed wetlands systems have been proposed during the 1980s to treat acid mine drainage generated by the abandoned coal mines in Eastern Appalachia. Generally, the wetlands receive near-neutral water, after it has been neutralized by (typically) a limestone-based treatment process. Metal precipitation occurs from their oxidation at near-neutral pH, complexation with organic matter, precipitation as carbonates or sulfides. The latter results from sediment-borne anaerobic bacteria capable of reverting sulfate ions into sulfide ions. These sulfide ions can then bind with heavy metal ions, precipitating heavy metals out of solution and effectively reversing the entire process.

The attractiveness of a constructed wetlands solution lies in its relative low cost. They are limited by the metal loads they can deal with (either from high flows or metal concentrations), though current practitioners have succeeded in developing constructed wetlands that treat high volumes (see description of Campbell Mine constructed wetland) and/or highly acidic water (with adequate pre-treatment). Typically, the effluent from constructed wetland receiving near-neutral water will be well-buffered at between 6.5-7.0 and can readily be discharged. Some of metal precipitates retained in sediments are unstable when exposed to oxygen (e.g., copper sulfide or elemental selenium), and it is very important that the wetland sediments remain largely or permanently submerged.

An example of an effective constructed wetland is on the Afon Pelena in the River Afan valley above Port Talbot where highly ferruginous discharges from the Whitworth mine have been successfully treated.

Precipitation of metal sulfides

Most base metals in acidic solution precipitate in contact with free sulfide, e.g. from H2S or NaHS. Solid-liquid separation after reaction would produce a base metal-free effluent that can be discharged or further treated to reduce sulfate, and a metal sulfide concentrate with possible economic value.

As an alternative, several researchers have investigated the precipitation of metals using biogenic sulfide. In this process, Sulfate-reducing bacteria oxidize organic matter using sulfate, instead of oxygen. Their metabolic products include bicarbonate, which can neutralize water acidity, and hydrogen sulfide, which forms highly insoluble precipitates with many toxic metals. Although promising, this process has been slow in being adopted for a variety of technical reasons.

Related Post



  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments: