RSS

Reclaimed Water or Recycled Water

Reclaimed water or recycled water, is former wastewater (sewage) that is treated to remove solids and certain impurities, and used in sustainable landscaping irrigation or to recharge groundwater aquifers. The purpose of these processes is sustainability and water conservation, rather than discharging the treated wastewater to surface waters such as rivers and oceans.

In spite of quite simple methods that incorporate WSUD for easy recovery of stormwater runoff. There remains a common perception that reclaimed water must involve sophisticated and technically complex treatment systems, attempting to recover the most complex and degraded types of sewage. As this effort is supposedly driven by sustainability factors, this type of implementation should inherently be associated with point source solutions, where it is most economical to achieve the expected outcomes. Harvesting of stormwater or rainwater can be an extremely simple to comparatively complex, as well as energy and chemical intensive, recovery of more contaminated sewage.

The recycling and recharging is often done by using the treated wastewater for designated municipal sustainable gardening irrigation applications. In most locations, it is intended to only be used for nonpotable uses, such as irrigation, dust control, and fire suppression. There is debate about possible health and environmental effects with its uses. However, Los Angeles County's sanitation districts provided treated wastewater for landscape irrigation in parks and golf courses since 1929. The first reclaimed water facility in California was built at San Francisco's Golden Gate Park in 1932. The Irvine Ranch Water District and Orange County Water District in Southern California are becoming the leaders in reclaimed water through their 'Green Acres Project.' Also in Orange County, and in other locations such as Singapore, water is given more advanced treatments and is used indirectly for drinking.

Benefits

The cost of reclaimed water exceeds that of potable water in many regions of the world, where a fresh water supply is plentiful. However, reclaimed water is usually sold to citizens at a cheaper rate to encourage its use. As fresh water supplies become limited from distribution costs, increased population demands, or climate change reducing sources, the cost ratios will evolve also.

Using reclaimed water for non-potable uses saves potable water for drinking, since less potable water will be used for non-potable uses.

It sometimes contains higher levels of nutrients such as nitrogen, phosphorus and oxygen which may somewhat help fertilize garden and agricultural plants when used for irrigation.

The usage of water reclamation decreases the pollution sent to sensitive environments. It can also enhance wetlands, which benefits the wildlife depending on that eco-system. For instance, The San Jose/Santa Clara Water Pollution Control Plant instituted a water recycling program to protect the San Francisco Bay area's natural salt water marshes.

Potable uses

In most locations, reclaimed water is not directly mixed with potable (drinking) water for several reasons:

  • Utilities providing reclaimed water for nonpotable uses do not treat the water to drinking water standards.
  • Varying amounts of pathogens, pharmaceutical chemicals (e.g., hormones from female hormonal contraception) and other trace chemicals are able to pass through the treatment and filtering process, potentially causing danger to humans. Modern technologies such as reverse osmosis may help to somewhat overcome this problem. An experiment by the University of New South Wales reportedly showed a reverse osmosis system removed ethinylestradiol and paracetamol from the wastewater, even at 1000 times the expected concentration.
  • Drinking water standards were developed for natural ground water, and are not appropriate for identifying contaminants in reclaimed water. In addition to pathogens, and organic and endocrine disrupting chemicals, a large number of compounds may be present in reclaimed water. They cannot all be tested for, and there is a paucity of toxicity information on many of the compounds.

Because of this, state regulatory agencies do not allow reclaimed water to be used for drinking, bathing, or filling swimming pools. They also warn those who use reclaimed water for irrigation to place a sign on their property warning people not to drink from the irrigation system, and to not use it directly on fruits or vegetables.

Aboard the International Space Station, astronauts have been able to drink recycled urine due to the introduction of the ECLSS system. The system cost $250 million and has been working since May 2009. The system recycles wastewater and urine back into potable water used for drinking, food preparation, and oxygen generation. This cuts back on the need for resupplying the space station so often.

Indirect Potable Reuse

Some municipalities are now investigating Indirect Potable Use (IPU) of reclaimed water. For example, reclaimed water may be pumped into (subsurface recharge) or percolated down to (surface recharge) groundwater aquifers, pumped out, treated again, and finally used as drinking water. This technique may also be referred to as groundwater recharging.

Unplanned Indirect Potable Reuse

Unplanned Indirect Potable Use has existed even before the introduction of reclaimed water. Many cities already use water from rivers that contain effluent discharged from upstream sewage treatment plants. There are many large towns on the River Thames upstream of London (Oxford, Reading, Swindon, Bracknell) that discharge their treated sewage into the river, which is used to supply London with water downstream.

This phenomenon is also observed in the United States, where the Mississippi River serves as both the destination of sewage treatment plant effluent and the source of potable water. Research conducted in the 1960s by the London Metropolitan Water Board demonstrated that the maximum extent of recycling water is about 11 times before the taste of water induces nausea in sensitive individuals. This is caused by the build up of inorganic ions such as Cl-, SO42-, K+ and Na+, which are not removed by conventional sewage treatment.

Space travel

Wastewater reclamation can be especially important in relation to human spaceflight.

  • In 1998, NASA announced it had built a human waste reclamation bioreactor designed for use in the International Space Station and a manned Mars mission. Human urine and feces are input into one end of the reactor and pure oxygen, pure water, and compost (humanure) are output from the other end. The soil could be used for growing vegetables, and the bioreactor also produces electricity.

Related Post



  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments: