Burning of fossil fuels is a major source of industrial greenhouse gas emissions, especially for power, cement, steel, textile, fertilizer and many other industries which rely on fossil fuels (coal, electricity derived from coal, natural gas and oil). The major greenhouse gases emitted by these industries are carbon dioxide, methane, nitrous oxide, hydrofluorocarbons (HFCs), etc., all of which increase the atmosphere's ability to trap infrared energy and thus affect the climate.
The concept of carbon credits came into existence as a result of increasing awareness of the need for controlling emissions. The IPCC (Intergovernmental Panel on Climate Change) has observed that:
Policies that provide a real or implicit price of carbon could create incentives for producers and consumers to significantly invest in low-GHG products, technologies and processes. Such policies could include economic instruments, government funding and regulation,
while noting that a tradable permit system is one of the policy instruments that has been shown to be environmentally effective in the industrial sector, as long as there are reasonable levels of predictability over the initial allocation mechanism and long-term price.
The mechanism was formalized in the Kyoto Protocol, an international agreement between more than 170 countries, and the market mechanisms were agreed through the subsequent Marrakesh Accords. The mechanism adopted was similar to the successful US Acid Rain Program to reduce some industrial pollutants.
Emission allowances
Under the Kyoto Protocol, the 'caps' or quotas for Greenhouse gases for the developed Annex 1 countries are known as Assigned Amounts and are listed in Annex B. The quantity of the initial assigned amount is denominated in individual units, called Assigned amount units (AAUs), each of which represents an allowance to emit one metric tonne of carbon dioxide equivalent, and these are entered into the country's national registry.
In turn, these countries set quotas on the emissions of installations run by local business and other organizations, generically termed 'operators'. Countries manage this through their national registries, which are required to be validated and monitored for compliance by the UNFCCC. Each operator has an allowance of credits, where each unit gives the owner the right to emit one metric tonne of carbon dioxide or other equivalent greenhouse gas. Operators that have not used up their quotas can sell their unused allowances as carbon credits, while businesses that are about to exceed their quotas can buy the extra allowances as credits, privately or on the open market. As demand for energy grows over time, the total emissions must still stay within the cap, but it allows industry some flexibility and predictability in its planning to accommodate this.
By permitting allowances to be bought and sold, an operator can seek out the most cost-effective way of reducing its emissions, either by investing in 'cleaner' machinery and practices or by purchasing emissions from another operator who already has excess 'capacity'.
Since 2005, the Kyoto mechanism has been adopted for CO2 trading by all the countries within the European Union under its European Trading Scheme (EU ETS) with the European Commission as its validating authority. From 2008, EU participants must link with the other developed countries who ratified Annex I of the protocol, and trade the six most significant anthropogenic greenhouse gases. In the United States, which has not ratified Kyoto, and Australia, whose ratification came into force in March 2008, similar schemes are being considered.
Kyoto's 'Flexible mechanisms'
A tradable credit can be an emissions allowance or an assigned amount unit which was originally allocated or auctioned by the national administrators of a Kyoto-compliant cap-and-trade scheme, or it can be an offset of emissions. Such offsetting and mitigating activities can occur in any developing country which has ratified the Kyoto Protocol, and has a national agreement in place to validate its carbon project through one of the UNFCCC's approved mechanisms. Once approved, these units are termed Certified Emission Reductions, or CERs. The Protocol allows these projects to be constructed and credited in advance of the Kyoto trading period.
The Kyoto Protocol provides for three mechanisms that enable countries or operators in developed countries to acquire greenhouse gas reduction credits
- Under Joint Implementation (JI) a developed country with relatively high costs of domestic greenhouse reduction would set up a project in another developed country.
- Under the Clean Development Mechanism (CDM) a developed country can 'sponsor' a greenhouse gas reduction project in a developing country where the cost of greenhouse gas reduction project activities is usually much lower, but the atmospheric effect is globally equivalent. The developed country would be given credits for meeting its emission reduction targets, while the developing country would receive the capital investment and clean technology or beneficial change in land use.
- Under International Emissions Trading (IET) countries can trade in the international carbon credit market to cover their shortfall in Assigned amount units. Countries with surplus units can sell them to countries that are exceeding their emission targets under Annex B of the Kyoto Protocol.
These carbon projects can be created by a national government or by an operator within the country. In reality, most of the transactions are not performed by national governments directly, but by operators who have been set quotas by their country.
Emission markets
For trading purposes, one allowance or CER is considered equivalent to one metric ton of CO2 emissions. These allowances can be sold privately or in the international market at the prevailing market price. These trade and settle internationally and hence allow allowances to be transferred between countries. Each international transfer is validated by the UNFCCC. Each transfer of ownership within the European Union is additionally validated by the European Commission.
Climate exchanges have been established to provide a spot market in allowances, as well as futures and options market to help discover a market price and maintain liquidity. Carbon prices are normally quoted in Euros per tonne of carbon dioxide or its equivalent (CO2e). Other greenhouse gasses can also be traded, but are quoted as standard multiples of carbon dioxide with respect to their global warming potential. These features reduce the quota's financial impact on business, while ensuring that the quotas are met at a national and international level.
Currently there are six exchanges trading in carbon allowances: the Chicago Climate Exchange, European Climate Exchange, NASDAQ OMX Commodities Europe, PowerNext, Commodity Exchange Bratislava and the European Energy Exchange. NASDAQ OMX Commodities Europe listed a contract to trade offsets generated by a CDM carbon project called Certified Emission Reductions (CERs). Many companies now engage in emissions abatement, offsetting, and sequestration programs to generate credits that can be sold on one of the exchanges. At least one private electronic market has been established in 2008: CantorCO2e. Carbon credits at Commodity Exchange Bratislava are traded at special platform - Carbon place.
Managing emissions is one of the fastest-growing segments in financial services in the City of London with a market estimated to be worth about €30 billion in 2007. Louis Redshaw, head of environmental markets at Barclays Capital predicts that "Carbon will be the world's biggest commodity market, and it could become the world's biggest market overall."
Setting a market price for carbon
Unchecked, energy use and hence emission levels are predicted to keep rising over time. Thus the number of companies needing to buy credits will increase, and the rules of supply and demand will push up the market price, encouraging more groups to undertake environmentally friendly activities that create carbon credits to sell.An individual allowance, such as an Assigned amount unit (AAU) or its near-equivalent European Union Allowance (EUA), may have a different market value to an offset such as a CER. This is due to the lack of a developed secondary market for CERs, a lack of homogeneity between projects which causes difficulty in pricing, as well as questions due to the principle of supplementarity and its lifetime. Additionally, offsets generated by a carbon project under the Clean Development Mechanism are potentially limited in value because operators in the EU ETS are restricted as to what percentage of their allowance can be met through these flexible mechanisms.
Yale University economics professor William Nordhaus argues that the price of carbon needs to be high enough to motivate the changes in behavior and changes in economic production systems necessary to effectively limit emissions of greenhouse gases.
Raising the price of carbon will achieve four goals. First, it will provide signals to consumers about what goods and services are high-carbon ones and should therefore be used more sparingly. Second, it will provide signals to producers about which inputs use more carbon (such as coal and oil) and which use less or none (such as natural gas or nuclear power), thereby inducing firms to substitute low-carbon inputs. Third, it will give market incentives for inventors and innovators to develop and introduce low-carbon products and processes that can replace the current generation of technologies. Fourth, and most important, a high carbon price will economize on the information that is required to do all three of these tasks. Through the market mechanism, a high carbon price will raise the price of products according to their carbon content. Ethical consumers today, hoping to minimize their “carbon footprint,” have little chance of making an accurate calculation of the relative carbon use in, say, driving 250 miles as compared with flying 250 miles. A harmonized carbon tax would raise the price of a good proportionately to exactly the amount of CO2 that is emitted in all the stages of production that are involved in producing that good. If 0.01 of a ton of carbon emissions results from the wheat growing and the milling and the trucking and the baking of a loaf of bread, then a tax of $30 per ton carbon will raise the price of bread by $0.30. The “carbon footprint” is automatically calculated by the price system. Consumers would still not know how much of the price is due to carbon emissions, but they could make their decisions confident that they are paying for the social cost of their carbon footprint.
Nordhaus has suggested, based on the social cost of carbon emissions, that an optimal price of carbon is around $30(US) per ton and will need to increase with inflation.
The social cost of carbon is the additional damage caused by an additional ton of carbon emissions. The optimal carbon price, or optimal carbon tax, is the market price (or carbon tax) on carbon emissions that balances the incremental costs of reducing carbon emissions with the incremental benefits of reducing climate damages. If a country wished to impose a carbon tax of $30 per ton of carbon, this would involve a tax on gasoline of about 9 cents per gallon. Similarly, the tax on coal-generated electricity would be about 1 cent per kWh, or 10 percent of the current retail price. At current levels of carbon emissions in the United States, a tax of $30 per ton of carbon would generate $50 billion of revenue per year.
Carbon credits SPOT trading safety
Exchanges after reports of stolen carbon credits created safety messures to make the SPOT trading safe. Bluenext announced on 13.04.2011 Safe harbour initiative. Commodity Exchange Bratislava opened on March 11th, 2011 the Suspicious carbon credits registry. The SCC Registry is free to use to check the block serials safety. SCC Registry asks emitters to report the stolen credits as soon as possible.
0 comments:
Post a Comment