RSS

Estimating Carbon Emissions

Emission factors assume a linear relation between the intensity of the activity and the emission resulting from this activity:

Emissionpollutant = Activity * Emission Factorpollutant

Intensities are also used in projecting possible future scenarios such as those used in the IPCC assessments, along with projected future changes in population, economic activity and energy technologies. The interrelations of these variables is treated under the so-called Kaya identity.

The level of uncertainty of the resulting estimates depends significantly on the source category and the pollutant. Some examples:

  • Carbon dioxide (CO2) emissions from the combustion of fuel can be estimated with a high degree of certainty regardless of how the fuel is used as these emissions depend almost exclusively on the carbon content of the fuel, which is generally known with a high degree of precision. The same is true for sulphur dioxide (SO2), since also sulphur contents of fuels are generally well known. Both carbon and sulphur are almost completey oxidized during combustion and all carbon and sulphur atoms in the fuel will be present in the flue gases as CO2 and SO2 respectively.
  • In contrast, the levels of other air pollutants and non-CO2 greenhouse gas emissions from combustion depend on the precise technology applied when fuel is combusted. These emissions are basically caused by either incomplete combustion of a small fraction of the fuel (carbon monoxide, methane, non-methane volatile organic compounds) or by complicated chemical and physical processes during the combustion and in the smoke stack or tailpipe. Examples of these are particulates, NOx, a mixture of nitric oxide, NO, and nitrogen dioxide, NO2).
  • Nitrous oxide (N2O) emissions from agricultural soils are highly uncertain because they depend very much on both the exact conditions of the soil, the application of fertilizers and meteorological conditions.
Emission factors of common fuels
Fuel/
Resource
Thermal
g(CO2-eq)/MJth
Energy Intensity
W·hth/W·he
Electric
g(CO2-eq)/kW·he
Coal B:91.50–91.72
Br:94.33
88
B:2.62–2.85
Br:3.46
3.01
B:863–941
Br:1,175
955
Oil 73 3.40 893
Natural gas cc:68.20
oc:68.40
51
cc:2.35
oc:3.05
cc:577
oc:751
599
Geothermal
Power
3~
TL0–1
TH91–122
Uranium
Nuclear power

WL0.18
WH0.20
WL60
WH65
Hydroelectricity
0.046 15
Conc. Solar Pwr

40±15#
Photovoltaics
0.33 106
Wind power
0.066 21

Note: 3.6 MJ = megajoule(s) == 1 kW·h = kilowatt-hour(s), thus 1 g/MJ = 3.6 g/kW·h.
Legend: B = Black coal (supercritical)–(new subcritical), Br = Brown coal (new subcritical), cc = combined cycle, oc = open cycle, TL = low-temperature/closed-circuit (geothermal doublet), TH = high-temperature/open-circuit, WL = Light Water Reactors, WH = Heavy Water Reactors, #Educated estimate.

Related Post



  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 comments: